From Wikipedia, the free encyclopedia

This article is about the science of measurement. For the study of weather, see Meteorology.

Metrology is the science of measurement.[1] It establishes a common understanding of units, crucial in linking human activities.[2]

Applied, technical or industrial metrology

Applied, technical or industrial metrology is concerned with the application of measurement to manufacturing and other processes and their use in society, ensuring the suitability of measurement instruments, their calibration and quality control.[2] Producing good measurements is important in industry as it has an impact on the value and quality of the end product, and a 10–15% impact on production costs.[6] Although the emphasis in this area of metrology is on the measurements themselves, traceability of the measuring-device calibration is necessary to ensure confidence in the measurement. Recognition of the metrological competence in industry can be achieved through mutual recognition agreements, accreditation, or peer review.[6] Industrial metrology is important to a country’s economic and industrial development, and the condition of a country’s industrial-metrology program can indicate its economic status.[19]

Machine vision (MV) is the technology and methods used to provide imaging-based automatic inspection and analysis for such applications as automatic inspection, process control, and robot guidance, usually in industry. Machine vision refers to many technologies, software and hardware products, integrated systems, actions, methods and expertise. Machine vision as a systems engineering discipline can be considered distinct from computer vision, a form of computer science. It attempts to integrate existing technologies in new ways and apply them to solve real world problems. The term is the prevalent one for these functions in industrial automation environments but is also used for these functions in other environments such as security and vehicle guidance.

The overall machine vision process includes planning the details of the requirements and project, and then creating a solution. During run-time, the process starts with imaging, followed by automated analysis of the image and extraction of the required information.